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OUTLINE

What is orbital debris?

From where should it be removed?

What kind of orbital debris should be removed?
How should it be removed?

Concept of operations for a debris removal mission

Summary




ORBITAL DEBRIS

All of the man-made objects in Earth orbit which no longer serve a useful purpose

Low Earth orbit .
satellites..: o

Geostation

satellites Images courtesy
of NASA

95% of the objects tracked in Earth orbit are debris
Since the beginning of the space age 2,000,000kg of debris have been left in orbit




WHAT ORBIT AND WHY?

Low Earth orbit (LEO) 200km < altitude < 2000km

LEO is the orbital region with the highest predicted Hundreds of active science and commercial
risk of collisions and largest predicted growth satellites operate in LEO
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ORBITAL DEBRIS IN LOW EARTH ORBIT

Predicted growth of orbital debris in LEO
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WHAT KIND OF LEO DEBRIS?

Large inactive satellites ’ Spent upper stages J
National security concerns and large flimsy appendages make Robust design that withstood launch loads and
them difficult targets (for the time being.) lower national security concerns
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WHERE IN LEO? (1/2)

Spent upper stages, aka rocket bodies (R/B), in LEO
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WHERE IN LEO? (2/2)

Some US spent upper stage (rocket body) orbits in LEO
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WHAT UPPER STAGE?

Demo Mission To an Agena D upper stage
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AGENA UPPER STAGE MODEL




HOW?
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CONCEPT OF OPERATIONS

Active orbital debris removal in seven easy
steps

1. Mother ship carries up to a dozen of nanosats to the proximity of the
target

2. Mother ship performs surveillance of the target and it determines its
rate of tumble and other relevant dynamics

3. Mother ship determines the best docking spots for the nanosats and
plans their paths

4. Nanosats are deployed one by one and they navigate to a soft dock
with the target

5. Nanosats broadcast data about the spacecraft to the mothership
which then refines the dynamic model of the target and performs
structural health analysis

6. Nanosats detumble the target

7. Mother ship docks with the upper stage and performs deorbit burns
for controlled reentry




ADVANTAGE OF THE PROPOSED
METHOD

Relies (mostly) on proven technologies and well understood dynamics

* The majority of the development effort is focused on algorithms for
cooperative autonomy

Redundancies

Inexpensive

Other concepts rely on a single debris removal satellite and various capture methods

Robot arm Cast net Harpoon
EADS (Germanyr




WHY CONTROLLED REENTRY?

Recovered objects from a Delta Il upper stage which reentered on 22 Jan 1997
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NASA STD8719.14 and DoD Instruction 3100.12 both require that the “rlsk from the total
debris casualty area for components and structural fragments surviving reentry shall
not exceed 1 in 10,000.”




DEBRIS ASSESSMENT
SOFTWARE

64 components present in Agena Upper Stage
Casualty area and kinetic energy obtained using DAS
Only two expected to survive reentry

* Propellant Tank
* Engine




DAS DATA

Component | Casualty Area | Kinetic Energy
(m?) (kJ)

Propellant 10.15 25.9
Tank
Engine 5.82 53.7

Debris Casualty Area (m?)

D, = y 0.6+ 4 )
i=1
where:

N = the number of objects
Aj = average cross-sectional area of the i surviving debris fragment (m?)




CALCULATING
CASUALTY RISK

Total human casualty expectation (E) calculated
using the equation:

E=D,*Pp
where:
D, = Debris Area

P, = Total average population density for the orbit




AVERAGE POPULATION DENSITY

The population density data (shown on Figure E-1) comes from an assessment conducted at
Johnson Space Center in 2002 of world-wide population projection databases.
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Figure E-1. Average Population Density as a Function of Orbital Inclination




TOTAL CALCULATED

Population Acceptable
Density Casualty ptat
Component : probability
(persons/km Risk :
2) of failure
Propellant :
10.15 1.52:10,000 65.7 %
Tank 15
Engine 5.82 0.87:10,000 100 %

The propellant tank casualty risk exceeds the
acceptable number making it necessary to have a
controlled reentry. For a controlled reentry, the
product of the probability of failure and the casualty
risk cannot exceed 1:10,000.




PRELIMINARY
FEASIBILITY
ANALYSIS




DOCKING MANEUVERS

Maneuvers for docking with a tumbling non-cooperating target
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G. Boyarko, Spacecraft Guidance Strategies for Proximity Maneuvering and Close Approach with A Tumbling Object, Naval Postgraduate
School, PhD Dissertation, 2010.

G. Boyarko, O. Yakimenko, M. Romano, Optimal Rendezvous Trajectories of a Controlled Spacecraft and a Tumbling Object, Journal of
Guidance, Control, and Dynamics, 34 (2011) 1239-1252.




NANOSAT OPTIMAL
TRAJECTORY

Minimum propellant maneuver

Cubesat must match final position and velocity of the desired
docking point on the rocket body.

Preliminary results show maneuvers taking less than 0.5 m/s
deltav to dock per cubesat.




NANOSAT TRAJECTORY VIDEO
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PROPOSED DOCKING MECHANISM

The Sticky Boom from Altius Space Machines

Sticky mechanism at the end of deployable
boom




WHAT IS ELECTROADHESION?

e Our design uses SRI's patented electro-adhesion technology.
 SRI International’s robot demonstrates electro adhesion in the
above video.




NANOSAT DESIGN

Actual Docking mechanism: Electro adhesive panels mounted on the
bottom of the nanosat.

Nanosat with
Electroadhesive
panels deployed




NANOSAT DYNAMIC SYSTEM

Nanosats docked with the upper stage
Dynamical system treated within the theoretical framework of evolving
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M. Balas, S. Frost, and F. Hadaegh, "Evolving Systems: A Theoretical Foundation," in AIAA Guidance, Navigation, and Control Conference and
S. Frost and M. Balas, "Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams," in AIAA Guidance, Navigation, and Control Co




DYNAMICS,MECHANICS,
MATLAB®/SIMULINK/SIMMECHANICS

Docking mechanics and
nozzle connection are
modeled as torsional spring-
damper systems




DYNAMICS:
SIMULATION RESULTS
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DELTA-V REQUIREMENTS
FOR DISPOSAL
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DEORBITING VIDEO
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DEORBITING VIDEO
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SUMMARY (1/2)

The dangers posed by orbital debris is a current problem that will
only get worse in the near future

Start with large objects in low Earth orbits and because

* There is potential for exponential growth (Kessler syndrome) in the
number of debris due to the collisions of large objects

* LEOs are the most crowded with debris
Start with spent upper stages (akarocket bodies) because

e They are more robust to the application of reentry loads

* They are less sensitive from the point of view of national security of
their owners




SUMMARY (2/2)

Demo mission to an Agena D upper stage (rocket body) because

* The Agena Rocket is owned by the United States
* It has roughly 2/3 the size and 1/2 the mass of a Kosmos3/SL-8
second stage

Concept of operations based on multiple satellites that
cooperatively detumble the upper stage and perform deorbit
burns




FUTURE GOALS

The first mission is sacrificial because it will be the first test
of the proposed concept.

Future missions will be reusable. The nanosats will go back
to the mothership and dock with it for refueling.

The mothership is also designed to be refilled with propellant
for itself and also be able to take new nanosats in case a few
of them are lost or sacrificed.




