

Design For Reusable Crewed Low Earth Orbit Transportation Vehicle

Embry-Riddle Aeronautical University –Team IronFly

Team Advisor: Dr. Eric Perrell

Team Members:*Timothy Grondin*Peter EdwardsSanTheresa BrownRyan MayMatthAustin CoffeyMichael MezzettoneTyler FReamonn NoratReamonn NoratReamonn Norat

Sam Patel Matthew Perry Tyler Roberson

09/11/13

- Problem Description
- Vehicle Configuration
- Decision Making Methodology
- Concept of Operations
- Critical Technologies
- RLV Life Cycle Cost and Schedule

- Reusable Launch Vehicle (RLV)
- 10,000 to 20,000 Lbs to Low Earth Orbit
- 400 km circular orbit, 52 deg inclination
- Fleet lifetime of 20 years
- Reusable
 - Level of reusability not defined trade studies
- Meet all FAA requirements

Vehicle Configuration

- 2 stage, LOX/RP-1, rocket vehicle
- 5 astronaut crew capsule (20 klbs)
- Launched from CCAFS
- Capsule landing in water
- Reusable 1st stage
- 2nd stage deorbit burn capability
- Capability to launch commercial satellites

Decision Making Methodology

- Trade Studies performed for all critical system-level decisions
- Studies Performed:
 - Land/Sea/Air Launch
 - Launch Location
 - Runway/Splashdown
 - Pad Configuration
 - Propellants
 - Number of Stages
 - Heat Shield Material
 - Abort System Configuration
 - Capsule Power System
 - Tank Insulation
 - Attitude Control System

- Criteria used in trade studies:
- Risk
- Feasibility
- Reusability
- Performance
- Cost
- Schedule
- Technology Readiness Level
- Example on next slide

Trade Study Example

Landing Trade Study

	Water Landing	Ground Landing	Powered, Runway	Unpowered, Runway
Landing Risk	5	1	2	1
Launch Risk	5	5	3	3
Feasibility	5	4	3	3
Reusability	3	4	3	4
Cost	3	5	3	4
Schedule	3	4	5	5
Tech Readiness Level	5	5	4	5
Total:	29	28	23	25

Cost Breakdown

	Water	Ground	Powered,	Unpowered,
	Landing	Landing	Runway	Runway
Vehicle Design/ Manufacture	4	4	2	3
Recovery/ Transportation Vehicle Purchase	1	4	2	2
Maintenance / Refurbishment	1	3	2	3
Transportation	3	4	2	2
Total:	9	15	8	10

Water Landing Chosen

The World's Forum for Aerospace Leadership

Trajectory Simulation

10000

3 Degree of Freedom
 Simulation Using MATLAB
 Plotted over Google Earth

Reentry Profile

Commercial Payload Capability

- Composite Ogive fairing
- Composite Spacecraft adapter
- Increased marketability

- 1st Stage Recovery
- 2 Part polyurethane foam 1st stage engines
 - Protects copper combustion chamber from corrosion
- Large Phenolic Impregnated Carbon Ablator (PICA) Heat Shield
 - Current max size is 1.07 x 0.61 x 0.25 meters. We need
 4.5 meter diameter.
- Orbital Maneuvering System (OMS) Engine Conical Injector
 - New Design
- Main Engine Pintle Injector
 - New Design

- Parachutes- 6x 40 m diameter Annular
- Simulation in MATLAB
- Foam 2 Part polyurethane foam Critical Tech

- •26.75 cubic feet of expanded foam required
- •Two tanks required then tubing to each engine
- Injection ports also used for chamber pressure ports

Total foam weight of 11.5 lbs System weight of 50 lbs

Capsule Thermal Protection System

- Capsule Aft Body (Blunt Side):
 - PICA Critical Tech
 - 2D Transient Thermal Analysis performed using ANSYS

- Capsule Fore Body (Tapered Side):
 - Toughened Unipiece Fibrous Insulation (TUFI)

Yan 	AL SOLUTION ==1 =602 =300 2 (AVG) 5=0 =299.1 =3797.2	I		Ν	oncommercial	SYS ise only
299.1 1076.46 1853.81 2631.17 3408.52	¥nı <mark>1</mark> x X					
	299 1	1076 44	1853 84	2631.1	7' 3408 52	ı

	PICA	TUFI
Surface Area (m ²)	13.11	64.11
Thickness (m)	0.0624	-
Mass (kg)	220.7	134.0
	Total TPS	354.7
	Mass (kg)	

Kerosene/NO2 engine, 532 lbf Thrust

Brand New Injector Design:

- Conical Fuel Shape
- Relatively Simple to Manufacture
- Moves O/F mixing to center of chamber
- Test hardware built, cold flow testing finished

RLV Life Cycle Cost and Total Schedule

	Prototype	New Vehicle	Refurbished Vehicle
Cost	\$16.5 million	\$7.75 million	\$4.05 million
Critical Path Method	1091 days (4.4 years)	263 days (1.06 years)	257 days (1.03 years)
Man-hours Method	910 days (3.7 years)	244 days (0.99 years)	156 days (0.63 years)

Critical Path: Total time is time of longest subsystem * 1.5
Man-hours: Total man-hours of all subsystems. Assume 80 workers, 8 hours per day, 248 work days per year

•Refurbished Vehicle turn-around time: 8 months

Launch Rate: 14 launches per year (to be domestically competitive)
Fleet size: 14-18 vehicles

Includes GSE, launch control and mission control buildings

	Construction	Operation (per launch)
Cost	\$15.7 million	\$2.8 million
Critical Path Method	5.4 years	n/a
Man-hours Method	1.5 years	n/a

FAA Reusable Launch Vehicle (RLV) Permit

Application Requirements

- Policy Review
- Safety Review
- Payload Review
- Financial Responsibility
- Environmental Review
- Compliance Monitoring
- FAA will make a determination within 180 days after submission

Hazards Assessments

	Preliminary Hazards List Pre-Launch				
ID	Hazard	Causal Factors	Recommendations	Risk ID	Standards
1	RP1 Contamination	Leak during fuel transfer or storage	Proper handling and Storage Techiniques	3B	MSDS
2	Temperature Extreme	Unwanted contact with LOX	Proper handling and Storage Techniques, LOX fill as late in countdown as possible	€3E	
3	Injured Personnel	Dropped Hardware	Safe personnel placement and handling procedures	2E	
4	Damaged Flight Hardware	ground handling mishap	Proper handling procedures and GSE	2D	
5	Corrosion	Sea-Side locale	Hardware coating/corrosion control, frequent inspections	2B	
6	Fire	RP-1 Leak near ignition source	Avoid ignition sources near RP-1, leak detection system	1E	MSDS
7	Fire	LOX Leak near ignition source	Avoid ignition sources near LOX, leak detection system	1E	MSDS
8	Explosion	Lox check valve malfunction	Redundant check valves	2E	
9	Explosion	COPV Failure	Proper pressurant monitoring and anomaly warning	2E	MSDS
10	Hypergol Contamination (Personnel)	Spacecraft Handling Mishap	Proper Personal Protective Equipment(PPE)/Handling	2E	
11	Loss of Habitable Atmosphere	Crew module life support fails	Redundant systems/Accessible escape path	1E	
12	Injured Personnel	Personnel exposed to nitrogen purged area	Proper signage and PPE	3D	
13	Injured Personnel	Falling from assembly building access pads	Proper railings and PPE	1E	
14	Injured Personnel	Crushed appendages during stage and payload mate	Safe personnel placement and handling procedures	3C	
15	Corrosion	LOX contact with groud support and flight hardware	Proper handling and Storage Techniques/hardware coatings	3D	
16	Explosion	Hypergol tanking mishap	Proper handling and Storage Techniques/hardware coatings	1E	MSDS

		Preliminary H	azards List Launch		
ID	Hazard	Causal Factors	Recommendations	Risk ID	Standards
17	Fire	Liftoff plume damages pad hardware	Water supression system and plume mititgation (flame trench)	3C	
18	Loss of Vehicle	Main engine failure	Redundant engine components (engine out capability)	1E	
19	Loss of Vehicle	Second Stage engine failure	Redundant engine components	1E	
20	Fuel Tank Structural Failure	Greater-than anticipated flight angle of attack	Robust Control algorithms	1E	
21	Oxidizer tank failure	Poor material properties	Quality control	1E	
22	Oxidizer tank failure	LOX vent malfunction	Redundant check valves	1E	
23	Explosion	vehicle diverts from preplanned trajectory(remote destruct)	Robust Control algorithms, well designed trajectory, launch over ocean	1E	
24	Personnel Injury	Anomaly shortly after liftoff	Safe personnel placement, PPE	1E	
25	Damaged Hardware	Anomaly shortly after liftoff	Proper hardware storage and protection	1E	
26	Fire	"Pad drift" burns area surrounding pad	Water supression, obey wind placards	3C	
27	Loss of Crew	Main engine failure	Launch abort system, Redundant engine components	1E	
28	Loss of Crew	Upper Stage engine failure	Launch abort system, Redundant engine components	1E	
29	Mission Failure	Failed Booster Staging	Redundant staging mechanisms	1E	
30	Mission Failure	Failed upper stage ignition	Redundant engine components	1E	
31	Mission Failure	Failed payload separation	Redundant seperation mechanisms	1E	
32	Mission Failure	Off-Nominal payload insertion orbit	Robust Control algorithms/ calculated fuel margins	1E	
33	Loss of Spent Booster	Recovery System Failure	Robust Control algorithms/ redundant recovery components	2E	

Capsule

Material	7075 aluminum
Internal Pressure	101 kPa
Reentry Loading	723 kPa
Parachute Loading	1337 kN
Landing Loading	909 kN
Helium Req	45 kg

Life Support System

OMS Engines

- Ablative Cooling
- 4 Flush Mounted engines
- FUEL T-1 grade Kerosene

2

- OX Nitrous Oxide (N₂O)
- O/F: 2.56
- New conical Injector Design Critical Tech

Parameter	Value (English)	Value (Metric)
Thrust at vacuum	532 lbf	2366 N
Maximum burn time	57 s	57 s
Isp at vacuum	282 s	282 s
Oxidizer Mass Flow	1.36 lbm/s	0.618 kg/s
Fuel Mass Flow	0.534 lbm/s	0.242 kg/s
Area Expansion Ratio	25	25
Chamber Pressure	700 psi	4.83 MPa

OMS Nozzle Scarf

Flush Mounted Nozzle:

- Highly underexpanded in vacuum
- Nonsymmetrical pressure distribution
- 20° scarf angle
- 0.283 psi from nozzle lower lip

OMS Engine Cooling

Ablative carbon-phenolic composite:

- T800H carbon fiber (60%)
- Borofen DX30 phenol-phormaldehide resin (40%)
- 14.6% weight loss during 30s 773K exposure
- 3670K for 90s, safety factor of 1.5
- Supported by silica cloth phenolic

Parameter	Value
Thickness	9 mm
Fiber strand width	25 mm
Flexural Strength	247 MPa
Young's Modulus	27.5 GPa

Abort Truss Structure

Requirements

- Support the load of the six abort motors in the event of abort.
- Separate from spacecraft at MECO 2
- Design
 - Tapering truss structure similar to the SPA
 - Cradles the spacecraft at the same six points as the SCA
 - Constructed from 7075 aluminum
 - Members are 2.5 inches in diameter and .125 inch wall thickness
 - The motors will be joined to the truss by two struts and the inner truss ring

Spacecraft Adapter

- Constructed from 7075 aluminum
- 6 Point attachment to spacecraft
- Explosive Bolt Separation
- Designed using CATIA FEA

Spacecraft Adapter

Maximum Von Mises Stress 46.1 ksi

Parachute Sizing Tool

- Annular Parachute (CD=1.0)
- 8 m/s terminal velocity if 1 parachute fails
 45 g/m²

$$d = \sqrt{\frac{8m \cdot g_0}{\pi n \rho_{air} C_D v_{term}^2}}$$

Reentry Simulation

 Hypersonic CFD code used to generate Cd curve fits
 Simulation run in MATLAB

Battery Cell Selection

- Off the shelf selection
 - SAFT Batteries VES 180
 - Li-ion Battery Cell

http://www.saftbatteries.com/images/Produits/Photos/VES.jpg

Battery Sizing and Thermal Output

- Required energy of 3000 Watt-hours
- Battery mass estimate
 - 84 VES 180 cells
 - 86 kg mass
- Battery Thermal Output
 - Per cell output of 0.6 Watts
 - 50 Watts thermal output of system

Solar Array Sizing

- Designed at EOL conditions
- 37 m² solar array area
- 18.5 m² area for each array
- Dimensions estimate
 - 2.5 x 7.4 meters
 - 8.22 x 24.34 ft
- Upon reentry solar arrays jettison from capsule

- 1. Solar Array
- 2. Shunt Regulator
- 3. Solar Array Drive
- 4. Ground Power Umbilical
- 5. Power Regulator Unit

- 6. Battery
- 7. Battery Bus
- 8. d(2)
- 9. d(4)
- 10. Bus Sense

- 11. Power Distribution Unit
- 12. V_{REF} Signal
- 13. Error Signal
- 14. Mode Controller
- 15. Loads

Booster Stage Engine Specifications

Engine Specifications	
Thrust (Vac.) (lb)	297583
Thrust (SL) (lb)	281620
I _{sp} (Vac.) (s)	344
I _{sp} (SL) (s)	325
Chamber Pressure	2300

Engine Weight Estimations (lb)	
Engine Assembly w/ gimbal	2230
Actuators (2)	160
Hardware	120

Critical Dimensions (in)	
Axial length of nozzle from throat to exit plane	56.22
Chamber characteristic length	87.75
Chamber diameter	15.32
Nozzle diameter	54.57
Throat diameter	9.50

2nd Stage Engine Specifications

Engine Specifications		Engine Weight Estimations (lb)	
Thrust (Vac.) (lb)	206567	Engine Assembly w/ gimbal	1500
I _{sp} (Vac.) (s)	340	Actuators (2)	160
Chamber Pressure	2300	Hardware	120

Critical Dimensions (in)	
Axial length of nozzle from throat to exit plane	56.22
Chamber characteristic length	45.00
Chamber diameter	12.76
Nozzle diameter	45.47
Throat diameter	7.91

Gimbal

Combustion Chamber

Main Engine Components

Booster Stage Engine Cooling

Upper Stage Engine Cooling

Booster Stage Engine Thrust Structure

Upper Stage Engine Thrust Structure

Material: Maraging Steel

Maximum Von Mises Stress: 95 ksi

Structure Mass: 107 kg

Combined Mass: 428 kg

Construction Options

Booster RP-1	
Skin Thickness (in)	0.1046
Stringers	4.5471
Stringer Area	1.1765
Mass (kg)	7500

Booster RP1	
Skin Thickness (in)	0.1046
Triangle Height (in)	4.5471
Rib Depth (in)	1.1765
Rib Width (in)	0.1101
Mass (kg)	3200

	LOX	RP1
Pressure (in)	48.73	4.12
Thickness(in)	0.0383	0.00316

Final Tankage Statistics

Upper Stage	Mass (kg)	Savings (kg)
Lox	1049.64	103
RP-1	967.77	95
Helium Required	75	
Booster	Mass (kg)	Savings (kg)
Lox	2125.73	798
RP-1	1450.32	544.043
Helium Required	240	

Upper Stage	Triangles	Time (days)
Lox	11856	4.24
RP1	10488	3.755
Booster	Triangles	Time (days)
Lox	37164	13.307
RP1	23940	9.40

Turbo Pump Analysis

	R	P-1			L	OX	
WHP	131163.03 hp			WHP	201892.6 hp		
BHP	154309.44 hp			BHP	237520.7 hp		
Ν	8000 rpm			N	8000 rpm		
Т	1216292lbf*in			т	1872177lbf*in		
Q	3.906 ft3/s			Q	8.73 ft3/s		
Dsu	8.465 in			Dsu	12.65 in		
Vin	10 ft/s			Vin	10 ft/s		
Dh	3 in			Dh	3 in		
Do	6.75 in			Do	9.5 in		
U1	235.45 ft/s	U2	685.47 ft/s	U1	332.2 ft/s	U2	537.87 ft/s
Vr1	20 ft/s	V02	649.26 ft/s	Vr1	20 ft/s	V02	501.66 ft/s
b1	1.33 in	alpha 2	1.32 deg	b1	2.1 in	alpha 2	1.71 deg
B1	4.86 deg	Concentration	0.85	B1	3.45 deg	Concentration	0.85

Forces and Stresses

 Stresses were estimated with an 0.125 inch wall thickness

	Resultant Force (lbs)	Stress (psi)
Stage 1 LOX	11318	9367
Stage 1 RP-1	5538	5469
Stage 2 LOX	2273	5307
Stage 2 RP-1	1125	4533

- Catia's FEA was used to verify hand calculations.
- Stage 1 LOX, max Von Mises stress of 10,100 psi.

RCS Thruster specifications

- Fuel:
 - Monomethylhydrazine (MMH)
- Ox: Dinitrogen Tetroxide (NTO)
- O/F: 2.145
- 20 Thrusters

Thruster Parameter	Value (English)	Value (Metric)
Thrust at vacuum	96.22 lbf	428.01 N
lsp at vacuum	320.7 s	320.7 s
Oxidizer Mass Flow	0.2046 lbm/s	0.09281 kg/s
Fuel Mass Flow	0.0954 lbm/s	0.04327 kg/s
Area Expansion Ratio	50	50
Chamber Pressure	110 psi	0.7584 MPa

Capsule Guidance Navigation and Control (GNC)

Sensors:

- Star Tracker: Sodern SED26
- IMU: Honeywell MIMU
- GPS: Surrey SGR-10

QUEST Algorithm

Picture Source: http://ars.els-cdn.com/content/image/1-s2.0-S127096381100201X-gr007.jpg

Avionics Architecture

Ground Support System - LOX

Ground Support System – RP-1

Payload Processing

THE SKY IS NO LONGER THE LIMIT

Questions? / Back Up Slides

