

General Rocket Analysis

Examples of a "Full Pre-Flight Analysis" on a Rocket

QUESTION: If someone gave you 1-million-dollars, and a YEAR, to make ONE rocket launch – but the launch had to be "fully analyzed"... what would you do?

ANSWER: Trajectory, Structures, Thermal, Fluid, Internal Ballistic, Manufacturing, Design, and Statistical Analysis

1 Mar 2014

(Cool graphic goes here)

Sean Stapf Cocoa Beach, Florida Sean.Stapf@Earthlink.net 321-536-5544

The Problem:

Even "professional" rockets can go wrong...

Pair-fired Mk66 rockets from side-mounted launchpods on an Apache AH-64: These two rockets should have landed "in the same place" (~40ft apart)... but instead: One arced down to the dirt...

So, what went wrong?

The torsion-fluted expansion cone? The spring-loaded wrap-around fins? The graphite nozzle throat insert? The nozzle-to-case lockwire? Motorcase burn-thru? Thrust misalignment? Warhead loosening? Burn instability? Launcher? Downwash? Winds? The Fault-Tree is large...

APPLICATIONS

What can you analyze?

DYNAMICS

Things can rattle around...

Sometimes a complex model is required, like: A moving, vibrating, flexible launch platform (helicopter), with toleranced dimensional "slop" between the rocket and its launch tube...

TRAJECTORY

Multi-staged, misaligned thrust, with possibly catastrophic explosions (A way to spend \$50,000 to calculate F = ma)

* ADAMS is used by the world's leading Aerospace, Defense, Automotive, Marine, Manufacturing, and Aviation industry dynamics modeling specialists, such as NASA, US Air Force, US Navy, FAA, Boeing, etc.

MECHANICS

Things can move around...

Interaction of parts, including micro- and macro- systems, and flexible bodies

In both **ADAMS** and SolidWorks, virtually any mechanism can be analyzed for both "kinematics" (moving parts; without regard to their mass) and "dynamics" (the mechanism in full analysis of inertial reaction loads. accelerations, etc.).

Additionally, ADAMS can incorporate intrinsic flexibility in parts.

STRUCTURES

Things can break, bend, or oscillate...

3-D CAD Solid Modeling, w/ Parametric Dimensioning, and Finite Element Analysis - FEA – to identify both the natural frequency structural modes and a part's response to external loads, with sectioning tools to identify Safety Factor, deflections, and potential weight reduction

THERMAL

Things can burn, melt, or weaken...

3-D Finite Element Analysis to identify temperature from Conduction, Convection, and Radiation

THERMAL-STRUCTURAL

Things can warp...

3-D Finite FEA to identify Structural Response from Temperature Effects

CFD ("Internal")

Things can swirl around inside your space...

Computational Fluid Dynamics – CFD – can be used to calculate flowpaths within structures

CFD ("External")

Things can be blown around by the airstream...

Computational Fluid Dynamics – CFD – can be used to calculate flow over objects, assisting in calculation of Drag Coefficients – Cd, Lift Coefficients - Cl, Heat Transfer regions, Local Pressure Loads, etc.

Thank you, and...

There is a lot to be calculated out there.

Any Questions? Please contact...

Sean Stapf Cocoa Beach, Florida Sean.Stapf@Earthlink.net 321-536-5544